A new round of technological revolution and industrial transformation is reshaping the global economic structure. With the internet as a foundational platform, emerging technologies such as generative AI, 5G, IoT, big data, and cloud computing are redefining the scope and content of digital campuses, smart classrooms, and online education. These advancements continually raise new requirements for educational networking solutions, campus network architecture, communication, and capacity. In line with the goal of promoting digital education and building a learning-oriented society, Ruijie Networks has innovatively proposed the Simplified Optical Ethernet 3.0 solution(SOE), which provides a crucial foundation for educational transformation in universities, effectively facilitating their digital transformation and innovation.
In the construction and maintenance of campus networks, universities often encounter issues such as congestion in office area network racks, messy cabinet cabling, and the mixing of multiple departmental equipment in weak current shafts. Additionally, network devices in dormitory areas may lead to problems like students stealing electricity due to local power sourcing. These issues have heightened safety risks on campuses. Meanwhile, in an era of increasing bandwidth demand, existing copper cables cannot support the high bandwidth of WiFi 6, hindering network speed and slowing down the digital transformation of universities. Over time, the aging of metal lines and increased passive responses in daily operations further reduce user satisfaction among faculty and students. These problems highlight the underlying issues with current campus network infrastructure and common challenges in construction and maintenance. Therefore, universities need cost-effective network solutions for education that are rationally structured, energy-efficient, flexible, easy to manage, and intelligently maintained.
Looking at the current fundamental network architecture, all-optical networks significantly outperform traditional copper Ethernet. Currently, there are two technical routes for all-optical networks: "Ethernet" and "PON" (as shown in Figure 1). In terms of protocol evolution, PON uses time division multiplexing to transmit data in a shared channel, while Ethernet employs wavelength division multiplexing to allocate independent bands for dedicated transmission, resulting in higher overall transmission efficiency. From a business development perspective, PON is designed for home broadband access, has a single business model, and has slow protocol development. In contrast, Ethernet protocol standards are mature, with rapid technological breakthroughs and clear future development paths.
Figure 1: Comparison of Ethernet and PON Protocols
In 2021, Ruijie Networks innovatively proposed the Simplified Optical Ethernet 1.0 solution, breaking traditional perceptions of all-optical networks. In 2022, Ruijie continuously updated the solution, launching the Simplified Optical 2.X solution incorporating coarse wavelength division multiplexing (CWDM) technology. As a pioneer in the all-optical Ethernet route, Ruijie continued to innovate, releasing the Simplified Optical Ethernet 3.0 solution in 2023, featuring ultra-aggregated switches, ultra-aggregated line cards, optical splitters, and newly upgraded modular transparent distribution devices. This solution leverages the high transmission performance and capacity of fiber optics while maintaining the Ethernet architecture, reflecting SOE technology trends in 2024 and allowing for unbound devices and zero-threshold maintenance. Additionally, the Simplified Optical 3.0 solution inherits the coarse wavelength division multiplexing (CWDM) technology from the 2.X version, reducing wiring costs between the central data center and various buildings, and introducing innovative ultra-aggregation products and SDN technology to create a highly integrated, stable, flexible, and easy-to-maintain all-optical network.
Utilizing coarse wavelength division multiplexing (CWDM) technology, this solution can build a lossless, passive intermediate layer campus network, offering individual rooms a dedicated 10 Gbps access rate. Passive transparent distribution devices replace traditional aggregation switches, combining eight optical signals into one fiber for transmission without requiring power (as shown in Figure 3). As the weak current room is entirely passive, there is no need for management of the intermediate layer, achieving a true physical two-layer architecture. The ultra-aggregated switch innovatively integrates the core-side optical signal unpacking function into one ultra-aggregated optical module, saving substantial fiber resources. Core-side deployment is also streamlined, achieving a genuinely simple architecture.
see more information: https://www.ruijienetworks.com/support/tech-gallery/digital-innovation-in-education-ruijie-s-optical-ethernet-3-0-solution
Fuqing and OpAI Home have in-depth exchanges on plywood and LVL process and application
The Golden Jiannan 2024ISGC International Spirits (China) Grand Prix Award ceremony was held
CO2-Capture: Empowering the new economy of global carbon sinks
Ambassadors for Cultural Exchanges between China and Foreign Countries-Hu Qingkui
Ambassadors for Cultural Exchanges between China and Foreign Countries-Sang Qingde
Overseas wood structure is widely used, Fuqing LVL continues to "go to sea" output